1. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9(Feb), 235–284 (2008)
2. Singh, A., Krause, A., Guestrin, C., Kaiser, W.J.: Efficient informative sensing using multiple robots. J. Artif. Intell. Res. 34, 707–755 (2009)
3. Ouyang, R., Low, K.H., Chen, J., Jaillet, P.: Multi-robot active sensing of non-stationary Gaussian process-based environmental phenomena. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, pp. 573–580. International Foundation for Autonomous Agents and Multiagent Systems (2014)
4. Hollinger, G.A., Sukhatme, G.S.: Sampling-based robotic information gathering algorithms. Int. J. Robot. Res. 33(9), 1271–1287 (2014)
5. Ling, C.K., Low, K.H., Jaillet, P.: Gaussian process planning with Lipschitz continuous reward functions: towards unifying Bayesian optimization, active learning, and beyond. In: AAAI, pp. 1860–1866 (2016)