Author:
Davari Narjes,Pashami Sepideh,Veloso Bruno,Nowaczyk Sławomir,Fan Yuantao,Pereira Pedro Mota,Ribeiro Rita P.,Gama João
Publisher
Springer International Publishing
Reference19 articles.
1. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory networks. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–7. IEEE (2015)
2. de Cheveigné, A., Arzounian, D.: Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data. Neuroimage 172, 903–912 (2018)
3. Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-series data: review, analysis, and guidelines. IEEE Access 9, 120043–120065 (2021). IEEE
4. Davari, N., Veloso, B., Ribeiro, R.P., Pereira, P.M., Gama, J.: Predictive maintenance based on anomaly detection using deep learning for air production unit in the railway industry. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10. IEEE (2021)
5. Fan, Y., Nowaczyk, S., Rögnvaldsson, T., Antonelo, E.A.: Predicting air compressor failures with echo state networks. In: Third European Conference of the Prognostics and Health Management Society 2016, Bilbao, Spain, 5–8 July 2016, pp. 568–578. PHM Society (2016)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献