1. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: 4th International Conference on Information Systems Security and Privacy (ICISSP), Portugal (2018)
2. Salles, G.A.C.M.A., de Castro, P.F., de Carvalho, M.G.H.: Synthetic Network Traffic Data Generation and Classification of Advanced Persistent Threat Samples: A Case Study with GANs and XGBoost. https://www.researchgate.net/publication/322055024_Applying_Machine_Learning_Techniques_to_Detect_Malicious_URLs. Accessed 28 May 2023
3. Subra, S.B.M., Subramanian, P., Kim, G.H.: An Ensemble Learning Based Approach for Intrusion Detection System in Cloud Computing. https://www.sciencedirect.com/science/article/pii/S1877050920317068. Accessed 28 May 2023
4. Moustafa, M., Slay, J.: Link A Comparative Analysis of XGBoost and Random Forests for Intrusion Detection https://www.researchgate.net/publication/320634704_A_Comparative_Analysis_of_XGBoost_and_Random_Forests_for_Intrusion_Detection. Accessed 28 May 2023
5. Al-Saleh, M., Al-Jarrah, O.: Machine Learning Applications in Intrusion Detection System (IDS): A Survey https://www.researchgate.net/publication/318788010_Machine_Learning_Applications_in_Intrusion_Detection_System_IDS_A_Survey. Accessed 28 May 2023