End-to-End Neural Relation Extraction Using Deep Biaffine Attention
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-15712-8_47
Reference33 articles.
1. Adel, H., Schütze, H.: Global normalization of convolutional neural networks for joint entity and relation classification. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1723–1729 (2017)
2. Bach, N., Badaskar, S.: A review of relation extraction. Carnegie Mellon University, Technical Report (2007)
3. Ballesteros, M., Dyer, C., Smith, N.A.: Improved transition-based parsing by modeling characters instead of words with LSTMs. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 349–359 (2015)
4. Bekoulis, G., Deleu, J., Demeester, T., Develder, C.: Adversarial training for multi-context joint entity and relation extraction. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2830–2836 (2018)
5. Bekoulis, G., Deleu, J., Demeester, T., Develder, C.: Joint entity recognition and relation extraction as a multi-head selection problem. Expert Syst. Appl. 114, 34–45 (2018)
Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. LB-BMBC: MHBiaffine-CNN to Capture Span Scores with BERT Injected with Lexical Information for Chinese NER;International Journal of Computational Intelligence Systems;2024-06-10
2. Joint extraction of entity relations from geological reports based on a novel relation graph convolutional network;Computers & Geosciences;2024-05
3. Span-based joint entity and relation extraction augmented with sequence tagging mechanism;Science China Information Sciences;2024-04-03
4. Enhancing Named Entity Recognition in Safety Hazard Analysis through GBD and LLMs;2024 7th International Conference on Information and Computer Technologies (ICICT);2024-03-15
5. Entity–relation triple extraction based on relation sequence information;Expert Systems with Applications;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3