1. Andresini, G., Appice, A., Iaia, D., Malerba, D., Taggio, N., Aiello, A.: Leveraging autoencoders in change vector analysis of optical satellite images. J. Intell. Inf. Sys. 58, 1–20 (2021). https://doi.org/10.1007/s10844-021-00670-9
2. Appice, A., Ciampi, A., Malerba, D.: Summarizing numeric spatial data streams by trend cluster discovery. Data Min. Knowl. Discov. 29(1), 84–136 (2013). https://doi.org/10.1007/s10618-013-0337-7
3. Appice, A., Di Mauro, N., Lomuscio, F., Malerba, D.: Empowering change vector analysis with autoencoding in bi-temporal hyperspectral images. In: MACLEANECMLPKDD Workshop, vol. 2466, pp. 1–10. CEUR Workshop Proceedings (2019)
4. Appice, A., Guccione, P., Acciaro, E., Malerba, D.: Detecting salient regions in a bi-temporal hyperspectral scene by iterating clustering and classification. Appl. Intell. 50(10), 3179–3200 (2020). https://doi.org/10.1007/s10489-020-01701-8
5. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: ICML, pp. 115–123 (2013)