When Liquid Rays Become Gas Rays: Can Evaporation Ever Be Non-Maxwellian?

Author:

Nathanson Gilbert M.

Abstract

AbstractA rare mistake by Otto Stern led to a confusion between density and flux in his first measurement of a Maxwellian speed distribution. This error reveals the key role of speed itself in Stern’s development of “the method of molecular rays”. What if the gas-phase speed distributions are not Maxwellian to begin with? The molecular beam technique so beautifully advanced by Stern can also be used to explore the speed distribution of gases evaporating from liquid microjets, a tool developed by Manfred Faubel. We employ liquid water and alkane microjets containing dissolved helium atoms to monitor the speed of evaporating He atoms into vacuum. While most dissolved gases evaporate in Maxwellian speed distributions, the He evaporation flux is super-Maxwellian, with energies up to 70% higher than the flux-weighted average energy of 2 RTliq. The explanation of this high-energy evaporation involves two beautiful concepts in physical chemistry: detailed balancing between He atom evaporation and condensation (starting with gas-surface collisions) and the potential of mean force on the He atom (starting with He atoms just below the surface). We hope that these measurements continue to fulfill Stern’s dream of the “directness and simplicity of the molecular ray method.”

Funder

Conference budget

Publisher

Springer International Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3