Publisher
Springer International Publishing
Reference25 articles.
1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. Combinatorial and Computational Geometry, MSRI Publications 52, 1–30 (2005). http://library.msri.org/books/Book52/files/01agar.pdf
2. Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding $$k$$ points with minimum diameter and related problems. J. Algorithms 12(1), 38–56 (1991). https://doi.org/10.1016/0196-6774(91)90022-Q
3. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1974). https://doi.org/10.1002/zamm.19790590233
4. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput. Geom. 3(2), 177–191 (1988). https://doi.org/10.1007/BF02187906
5. Bǎdoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proceedings of the 34th ACM Symposium on Theory of Computing (STOC 2002), pp. 250–257 (2002). https://doi.org/10.1145/509907.509947