Author:
Anh Duong Tuan,Hoai Tran Long
Publisher
Springer Nature Switzerland
Reference30 articles.
1. Keogh, E., Lin, J., Fu, A.: HOT SAX: Efficiently finding the most unusual time series subsequence. In: Proceedings of The Fifth IEEE International Conference on Data mining (ICDM), pp. 226–233, (2005)
2. Bu, Y., Leung, T.W., Fu, A., Keogh, E., Pei, J., Meshkin, S.: WAT: Finding top-K discords in time series database. In: Proceedings of the 2007 SIAM International Conference on Data Mining (SDM' 07), Minneapolis, MN, USA, 26–28 (2007)
3. Li, G., Braysy, O., Jiang, L., Wu, Z., Wang, Y.: Finding time series discord based on bit representation clustering. Knowl. Based- Syst. 54, 243–254 (2013)
4. Oliveira, A.L.I., Meira, S.R.L.: Detecting novelties in time series through neural networks forecasting with robust confidence intervals. Neurocomputing 70(1–3), 79–92 (2006)
5. Pena, E.H.M., de Assis, M.V.O.M., Proença Jr., M.L.: Anomaly detection using forecasting methods ARIMA and HWDS, In: Proceedings of 32nd International Conference of Chilean Computer Science Society (SCCC), Temuco, Chile, pp. 11–15 (2013)