1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 40–49. PMLR (2018). https://proceedings.mlr.press/v80/achlioptas18a.html
2. Alexiou, E., Yang, N., Ebrahimi, T.: PointXR: a toolbox for visualization and subjective evaluation of point clouds in virtual reality. In: 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX). IEEE (2020). https://doi.org/10.1109/qomex48832.2020.9123121
3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv e-prints arXiv:1701.07875 (2017)
4. Arshad, M.S., Beksi, W.J.: A progressive conditional generative adversarial network for generating dense and colored 3D point clouds (2020). https://doi.org/10.1109/3dv50981.2020.00081
5. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014). http://arxiv.org/abs/1312.6203