Author:
Chen Tao,Zhang Mingyang,Lu Jing,Bendersky Michael,Najork Marc
Publisher
Springer International Publishing
Reference45 articles.
1. Amati, G., Rijsbergen, C.J.V.: Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20(4), 357–389 (2002)
2. Bajaj, P., et al.: MS MACRO: a human generated machine reading comprehension dataset (2018)
3. Bendersky, M., Zhuang, H., Ma, J., Han, S., Hall, K.B., McDonald, R.T.: RRF102: meeting the TREC-COVID challenge with a 100+ runs ensemble. CoRR, abs/2010.00200 (2020)
4. Berger, A., Caruana, R., Cohn, D., Freitag, D., Mittal, V.: Bridging the lexical chasm: statistical approaches to answer-finding. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2000, pp. 192–199. Association for Computing Machinery. New York (2000)
5. Cormack, G.V., Clarke, C.L.A., Buettcher, S.: Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, pp, 758–759. Association for Computing Machinery, New York (2009)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bridging Dense and Sparse Maximum Inner Product Search;ACM Transactions on Information Systems;2024-08-19
2. Multimodal Information Retrieval;Synthesis Lectures on Computer Vision;2024-06-26
3. Answer Retrieval in Legal Community Question Answering;Lecture Notes in Computer Science;2024
4. LaQuE: Enabling Entity Search at Scale;Lecture Notes in Computer Science;2024
5. Dense Text Retrieval based on Pretrained Language Models: A Survey;ACM Transactions on Information Systems;2023-12-18