Author:
Phan Thanh-Dat,Do The-Vinh
Publisher
Springer International Publishing
Reference14 articles.
1. Cho, S., Asfour, S., Onar, A., Kaundinya, N.: Tool breakage detection using support vector machine learning in a milling process. Int. J. Mach. Tools Manuf. 45, 241–249 (2005)
2. Pai, S.P., Nagabhushana, T.: Tool condition monitoring using artificial neural network models. Handbook of Research on Emerging Trends and Applications of Machine Learning (ed). IGI Global, pp. 550–576 (2020)
3. Lauro, C., Brandão, L., Baldo, D., Reis, R., Davim, J.: Monitoring and processing signal applied in machining processes–a review. Measurement 58, 73–86 (2014)
4. Chung, T.-K., et al.: An attachable electromagnetic energy harvester driven wireless sensing system demonstrating milling-processes and cutter-wear/breakage-condition monitoring. Sensors 16, 269 (2016)
5. Botsaris, P.N., Tsanakas, J.A.: State-of-the-art in methods applied to tool condition monitoring (TCM) in unmanned machining operations: a review. In: Proceedings of the international conference of COMADEM, pp. 73–87 (2008)