PSO-PARSIMONY: A New Methodology for Searching for Accurate and Parsimonious Models with Particle Swarm Optimization. Application for Predicting the Force-Displacement Curve in T-stub Steel Connections
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-86271-8_2
Reference24 articles.
1. Ahila, R., Sadasivam, V., Manimala, K.: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances. Appl. Soft Comput. 32, 23–37 (2015)
2. Clerc, M.: Stagnation Analysis in Particle Swarm Optimisation or What Happens When Nothing Happens, p. 17, December 2006
3. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), vol. 1, pp. 84–88 (2000). https://doi.org/10.1109/CEC.2000.870279
4. Fernandez-Ceniceros, J., Sanz-Garcia, A., Antoñanzas-Torres, F., Martinez-de Pison, F.J.: A numerical-informational approach for characterising the ductile behaviour of the t-stub component. Part 1: Refined finite element model and test validation. Eng. Struct. 82, 236–248 (2015). https://doi.org/10.1016/j.engstruct.2014.06.048
5. Fernandez-Ceniceros, J., Sanz-Garcia, A., Antoñanzas-Torres, F., Martinez-de Pison, F.J.: A numerical-informational approach for characterising the ductile behaviour of the t-stub component. Part 2: Parsimonious soft-computing-based metamodel. Eng. Struct. 82, 249–260 (2015). https://doi.org/10.1016/j.engstruct.2014.06.047
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Feature Selection Based on a Decision Tree Genetic Algorithm;Lecture Notes in Computer Science;2023
2. New Hybrid Methodology Based on Particle Swarm Optimization with Genetic Algorithms to Improve the Search of Parsimonious Models in High-Dimensional Databases;Lecture Notes in Computer Science;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3