Quantum Constant Propagation

Author:

Chen YanbinORCID,Stade YannickORCID

Abstract

AbstractA quantum circuit is often executed on the initial state where each qubit is in the zero state. Therefore, we propose to perform a symbolic execution of the circuit. Our approach simulates groups of entangled qubits exactly up to a given complexity. Here, the complexity corresponds to the number of basis states expressing the quantum state of one entanglement group. By doing that, the groups need neither be determined upfront nor be bound by the number of involved qubits. Still, we ensure that the simulation runs in polynomial time - opposed to exponential time as required for the simulation of the entire circuit. The information made available at gates is exploited to remove superfluous controls and gates. We implemented our approach in the tool quantum constant propagation (QCP) and evaluated it on the circuits in the benchmark suite MQTBench. By applying our tool, only the work that cannot be carried out efficiently on a classical computer is left for the quantum computer, hence exploiting the strengths of both worlds.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3