1. Burlina, P., Pacheco, K., Joshi, N., Freund, D., Kong, J., Bressler, N.: Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput. Biol. Med. 109, 79–86 (2019)
2. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)
3. Fu, H., et al.: GANet: a deep learning framework for glaucoma diagnosis with gated attention mechanism. IEEE J. Biomed. Health Inf. 25(4), 1184–1194 (2021)
4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
5. Neha, K., Gour, D.: Automatic detection of diabetic retinopathy stages using deep convolutional neural network. In: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–5. IEEE (2019)