Local Reductions for the Modal Cube

Author:

Nalon CláudiaORCID,Hustadt UllrichORCID,Papacchini FabioORCID,Dixon ClareORCID

Abstract

AbstractThe modal logic $${\mathsf {K}}$$ K is commonly used to represent and reason about necessity and possibility and its extensions with combinations of additional axioms are used to represent knowledge, belief, desires and intentions. Here we present local reductions of all propositional modal logics in the so-called modal cube, that is, extensions of $${\mathsf {K}}$$ K with arbitrary combinations of the axioms $${\mathsf {B}}$$ B , $${\mathsf {D}}$$ D , $${\mathsf {T}}$$ T , $${\mathsf {4}}$$ 4 and $${\mathsf {5}}$$ 5 to a normal form comprising a formula and the set of modal levels it occurs at. Using these reductions we can carry out reasoning for all these logics with the theorem prover "Image missing" . We define benchmarks for these logics and experiment with the reduction approach as compared to an existing resolution calculus with specialised inference rules for the various logics.

Publisher

Springer International Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resolution Calculi for Non-normal Modal Logics;Lecture Notes in Computer Science;2023

2. Non-Classical Logics in Satisfiability Modulo Theories;Lecture Notes in Computer Science;2023

3. Buy One Get 14 Free: Evaluating Local Reductions for Modal Logic;Automated Deduction – CADE 29;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3