Rensets and Renaming-Based Recursion for Syntax with Bindings

Author:

Popescu Andrei

Abstract

AbstractI introduce renaming-enriched sets (rensets for short), which are algebraic structures axiomatizing fundamental properties of renaming (also known as variable-for-variable substitution) on syntax with bindings. Rensets compare favorably in some respects with the well-known foundation based on nominal sets. In particular, renaming is a more fundamental operator than the nominal swapping operator and enjoys a simpler, equationally expressed relationship with the variable-freshness predicate. Together with some natural axioms matching properties of the syntactic constructors, rensets yield a truly minimalistic characterization of $$\lambda $$ λ -calculus terms as an abstract datatype – one involving an infinite set of unconditional equations, referring only to the most fundamental term operators: the constructors and renaming. This characterization yields a recursion principle, which (similarly to the case of nominal sets) can be improved by incorporating Barendregt’s variable convention. When interpreting syntax in semantic domains, my renaming-based recursor is easier to deploy than the nominal recursor. My results have been validated with the proof assistant Isabelle/HOL.

Publisher

Springer International Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rensets and Renaming-Based Recursion for Syntax with Bindings Extended Version;Journal of Automated Reasoning;2023-07-05

2. Locally Nameless Sets;Proceedings of the ACM on Programming Languages;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3