1. Avigad, J.: The computational content of classical arithmetic. In: Feferman, S., Sieg, W. (eds.) Proofs, Categories, and Computations: Essays in Honor of Grigori Mints, pp. 15–30. College Publications (2010)
2. Avigad, J.: The mechanization of Mathematics 65(6) (2018). https://www.ams.org/journals/notices/201806/rnoti-p681.pdf
3. Bansal, K., Loos, S., Rabe, M., Szegedy, C., Wilcox, S.: HOList: an environment for machine learning of higher order logic theorem proving. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 454–463. PMLR (2019)
4. van Benthem Jutting, L.S.: Checking Landau’s “Grundlagen" in the Automath system. PhD thesis, Eindhoven University of Technology, 1977. Published as Mathematical Centre Tracts nr. 83 (1979)
5. Berghofer, S.: Proofs, Programs and Executable Specifications in Higher Order Logic. PhD thesis, Technische Universität München, Institut für Informatik (2003)