Author:
Calegari Roberta,Sartor Giovanni
Publisher
Springer International Publishing
Reference24 articles.
1. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011). https://doi.org/10.1017/S0269888911000166
2. Calegari, R., Sartor, G.: A model for the burden of persuasion in argumentation. In: Villata, S., Harašta, J., Křemen, P. (eds.) Legal Knowledge and Information Systems. JURIX 2020: The Thirty-Third Annual Conference. Frontiers in Artificial Intelligence and Applications, Brno, Czech Republic, 9–11 December 2020, vol. 334, pp. 13–22. IOS (2020). https://doi.org/10.3233/FAIA200845
3. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5–6), 286–310 (2007). https://doi.org/10.1016/j.artint.2007.02.003
4. Cramer, M., van der Torre, L.: SCF2-an argumentation semantics for rational human judgments on argument acceptability. In: Proceedings of the 8th Workshop on Dynamics of Knowledge and Belief (DKB-2019) and the 7th Workshop KI & Kognition (KIK-2019) co-located with 44nd German Conference on Artificial Intelligence (KI 2019), Kassel, Germany, 23 September 2019, pp. 24–35 (2019)
5. Farley, A.M., Freeman, K.: Burden of proof in legal argumentation. In: Proceedings of the 5th International Conference on Artificial Intelligence and Law, Maryland, USA, pp. 156–164. ACM (1995). https://doi.org/10.1145/222092.222227
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Argumentation and explanation in the law;Frontiers in Artificial Intelligence;2023-09-04
2. A Formal Framework for Combining Legal Reasoning Methods;Proceedings of the Nineteenth International Conference on Artificial Intelligence and Law;2023-06-19
3. A comprehensive account of the burden of persuasion in abstract argumentation;Journal of Logic and Computation;2023-01-27
4. Arg2P: an argumentation framework for explainable intelligent systems;Journal of Logic and Computation;2022-01-25
5. Case-Based Reasoning via Comparing the Strength Order of Features;Explainable and Transparent AI and Multi-Agent Systems;2022