Publisher
Springer Nature Switzerland
Reference14 articles.
1. Ferreira, M.I.A.S.N., et al.: Machine learning models for Parkinson’s disease detection and stage classification based on spatial-temporal gait parameters. Gait Posture 98, 49–55 (2022)
2. Gupta, I., et al.: PCA-RF: an efficient Parkinson’s disease prediction model based on random forest classification. arXiv preprint arXiv:2203.11287 (2022)
3. Lin, C.-H., et al.: Early detection of Parkinson’s disease by neural network models. IEEE Access 10, 19033–19044 (2022)
4. Ezhil Selvan, T.C., Vishnu Durai, R.S.: Prediction of Parkinson’s disease using XGBoost. In: 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), vol. 1. IEEE (2022)
5. Maitin, A.M., Muñoz, J.P.R., García-Tejedor, Á.J.: Survey of machine learning techniques in the analysis of EEG signals for Parkinson’s disease: a systematic review. Appl. Sci. 12(14), 6967 (2022). https://doi.org/10.3390/app12146967