Intelligent Detection of DDoS Attacks in SDN Networks
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-92435-5_12
Reference13 articles.
1. Hu, Q., Tang, B., Lin, D.: Anomalous user activity detection in enterprise multi-source logs. In: Proceeding of the IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, pp. 797–804 (2017)
2. Landauer, M., Wurzenberger, M., Skopik, F., Settanni, G., Filzmoser, P.: Dynamic log file analysis: an unsupervised cluster evolution approach for anomaly detection. Comput. Secur. 79, 94–116 (2018). https://doi.org/10.1016/j.cose.2018.08.009
3. Dawoud, A., Shahristani, S., Raun, C.: Deep learning and software-defined networks: towards secure IoT architecture. Internet Things 3–4, 82–89 (2018). https://doi.org/10.1016/j.iot.2018.09.003
4. Smith, R., Zincir-Heywood, A., Heywood, M., Jacobs, J.: Initiating a moving target network defense with a real-time neuro-evolutionary detector. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, New York, pp. 1095–1102 (2016)
5. Zhang, H., Wang, Y., Chen, H., Zhao, Y., Zhang, J.: Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks. Opt. Fiber Technol. 39, 37–42 (2017). https://doi.org/10.1016/j.yofte.2017.09.023
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Investigating the impact of unstable network connections on the cluster running a consensus algorithm;Системи обробки інформації;2024-05-21
2. DEVELOPMENT OF NETWORK SIMULATION MODEL FOR EVALUATING THE EFFICIENCY OF DISTRIBUTED CONSENSUS TAKING INTO ACCOUNT THE INSTABILITY OF NETWORK CONNECTIONS;Information and communication technologies, electronic engineering;2024-05-12
3. Machine Learning Techniques for Intrusion Detection Systems in SDN-Recent Advances, Challenges and Future Directions;Computer Modeling in Engineering & Sciences;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3