1. Banerjee, D., Nair, P.A., Kaur, J.N., Usbeck, R., Biemann, C.: Modern baselines for SPARQL semantic parsing. In: Amigó, E., Castells, P., Gonzalo, J., Carterette, B., Shane Culpepper, J., Kazai, G. (eds.) SIGIR 2022: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022, pp. 2260–2265. ACM (2022)
2. Baroni, M.: Linguistic generalization and compositionality in modern artificial neural networks. Philos. Trans. Royal Soc. B: Biol. Sci. 375(1791), 20190307 (2019)
3. IAIS bFraunhofer. Knowledge graph question answering using graph-pattern isomorphism. In: Further with Knowledge Graphs: Proceedings of the 17th International Conference on Semantic Systems, 6–9 September 2021, Amsterdam, The Netherlands, vol. 53, p. 103. IOS Press (2021)
4. Chen, Y., Li, H., Qi, G., Wu, T., Wang, T.: Outlining and filling: hierarchical query graph generation for answering complex questions over knowledge graphs. arXiv preprint arXiv:2111.00732 (2021)
5. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics (June 2019)