Author:
Marichal Jean-Luc,Zenaïdi Naïm
Abstract
AbstractWe now apply our results to certain multiple Γ-type functions and multiple
$$\log \Gamma $$
log
Γ
-type functions that are known to be well-studied special functions, namely: the gamma function, the digamma function, the polygamma functions, the q-gamma function, the Barnes G-function, the Hurwitz zeta function and its higher order derivatives, the generalized Stieltjes constants, and the Catalan number function. For recent background on some of these functions, see, e.g., Srivastava and Choi (Zeta andq-zeta functions and associated series and integrals. Elsevier, Amsterdam, 2012).
Publisher
Springer International Publishing
Reference20 articles.
1. J. Anastassiadis. Définition des fonctions eulériennes par des équations fonctionnelles. (French). Mémor. Sci. Math., Fasc. 156 Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964.
2. E. Artin. The gamma function. Dover Books on Mathematics. Dover Publications Inc., New York, 2015.
3. R. Askey. The q-gamma and q-beta functions. Applicable Anal., 8(2):125–141, 1978/79.
4. B. C. Berndt. Chapter 8 of Ramanujan’s second notebook. J. Reine Angew. Math., 338:1–55, 1983.
5. I. V. Blagouchine. A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations. J. Number Theory, 148: 537–592, 2015.