Author:
Marichal Jean-Luc,Zenaïdi Naïm
Abstract
AbstractAs discussed in the first chapter, the main objective of our work is to generalize Krull-Webster’s theory to multiple
$$\log \Gamma $$
log
Γ
-type functions and explore the properties of these functions that are analogues of classical properties of the gamma function.
Publisher
Springer International Publishing
Reference24 articles.
1. M. Aigner and G. M. Ziegler. Proofs from the Book. Sixth edition. Springer, Berlin, 2018.
2. J. Anastassiadis. Remarques sur quelques équations fonctionnelles. (French). C. R. Acad. Sci. Paris, 250:2663–2665, 1960.
3. E. Artin. The gamma function. Dover Books on Mathematics. Dover Publications Inc., New York, 2015.
4. B. C. Berndt. Chapter 8 of Ramanujan’s second notebook. J. Reine Angew. Math., 338:1–55, 1983.
5. I. V. Blagouchine. Expansions of generalized Euler’s constants into the series of polynomials in π
−2 and into the formal enveloping series with rational coefficients only. J. Number Theory, 158: 365–396, 2016.