Publisher
Springer Nature Switzerland
Reference20 articles.
1. Nithya, R., Ramyachitra, D., Manikandan, P.: An efficient Bayes classifiers algorithm on 10-fold cross validation for heart disease dataset. Int. J. Comput. Intell. Inform. 5(3), 229–235 (2015)
2. Babatunde, R.S., Olabiyisi, S.O., Omidiora, E.O., Ganiyu, R.A., Isiaka, R.M.: Assessing the performance of random partitioning and k-fold cross validation methods of evaluation of a face recognition system. In: The Ninth International Conference on Applications of Information Communication Technologies to Teaching, Research and Administration, p. 129 (2015). https://doi.org/10.14738/aivp.36.1460
3. Little, M.A., Varoquaux, G., Saeb, S.: Using and understanding cross-validation strategies. https://doi.org/10.1093/gigascience/gix020. Advance Access Publication Date: 17 March 2017 Chicago, USA and 4Rehabilitation Institute of Chicago, 345 E Superior, 60611, Chicago, USA
4. Berrar, D.: “Cross-validation” Data Science Laboratory, Tokyo Institute of Technology 2-12-1-S3-70 Ookayama, Meguro-ku, Tokyo 152-8550, Japan (2018) Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, Volume 1, Elsevier
5. Jung, Y.: Multiple predicting K-fold cross-validation for model selection. J. Nonparametric Stat. 30(1), 197–215 (2018). https://www.tandfonline.com/loi/gnst20
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献