Data Ecosystems: A New Dimension of Value Creation Using AI and Machine Learning

Author:

Hecker Dirk,Voss Angelika,Wrobel Stefan

Abstract

AbstractMachine learning and artificial intelligence have become crucial factors for the competitiveness of individual companies and entire economies. Yet their successful deployment requires access to a large volume of training data often not even available to the largest corporations. The rise of trustworthy federated digital ecosystems will significantly improve data availability for all participants and thus will allow a quantum leap for the widespread adoption of artificial intelligence at all scales of companies and in all sectors of the economy. In this chapter, we will explain how AI systems are built with data science and machine learning principles and describe how this leads to AI platforms. We will detail the principles of distributed learning which represents a perfect match with the principles of distributed data ecosystems and discuss how trust, as a central value proposition of modern ecosystems, carries over to creating trustworthy AI systems.

Publisher

Springer International Publishing

Reference20 articles.

1. Hecker, D., Koch, D. J., Heydecke, J., & Werkmeister, C. (2017b). Big-Data-Geschäftsmodelle – die drei Seiten der Medaille. Wirtschaftsinformatik & Management, 8(6), 20–30.

2. Döbel, I., Lies, M., Vogelsang, M. M., Neustroev, D., Petzka, H., Riemer, A., Rüping, S., Voss, A., Wegele, M., Welz, J. (2018). Maschinelles Lernen [online]. Eine Analyse zu Kompetenzen, Forschung und Anwendung. Sankt Augustin, Fraunhofer Gesellschaft. Accessed November 11, 2020, from https://www.bigdata.fraunhofer.de/de/big-data/kuenstliche-intelligenz-und-maschinelles-lernen/ml-studie.html

3. Hecker, D., Döbel, I., Rüping, S., & Schmitz, V. (2017a). Künstliche Intelligenz und die Potenziale des maschinellen Lernens für die Industrie. Wirtschaftsinformatik & Management, 9(5), 26–35.

4. Paass, G., & Hecker, D. (2021). Künstliche Intelligenz - Was steckt hinter der Technologie der Zukunft? Springer. ISBN ist: 978-3-658-30210-8.

5. Bader, S. & Oevermann, J. (2017). Semantic annotation of heterogeneous data sources: Towards an integrated information framework for service technicians. Proceedings of the 13th International Conference on Semantic Systems (pp. 73–80), SEMANTICS 2017, Amsterdam, The Netherlands, September 11–14.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3