Gene Editing of Wheat to Reduce Coeliac Disease Epitopes in Gluten

Author:

Smulders Marinus J. M.,Gilissen Luud J. W. J.,Juranić Martina,Schaart Jan G.,van de Wiel Clemens C. M.

Abstract

AbstractBy using gene editing technologies such as CRISPR/Cas, precise modifications can be made in the genome. CRISPR/Cas is especially valuable for targeted mutagenesis in polyploids, as it can induce mutations of multiple alleles simultaneously, to obtain regenerants that are homozygous for the desired mutation. A range of gene-edited traits have been developed in hexaploid bread wheat, including various nutrition and health-related traits, plant architecture, pest and disease resistance, tolerance to abiotic stress, and traits that enable more efficient breeding. Wheat is also known as a cause of some human diseases, particularly coeliac disease (CD), with a prevalence of 1–2% of the population. In the EU alone, at least 4.5 million people suffer from it. CD is a chronic inflammation of the small intestine, induced and maintained in genetically predisposed individuals by the consumption of gluten proteins from wheat, barley and rye. As there is no cure, patients must follow a life-long gluten-free diet. The dominant epitopes in gluten proteins that trigger the disease, have been characterized, but they cannot be removed by classical breeding without affecting baking quality, as it concerns over 100 gluten genes that occur partly as blocks of genes in the genome of wheat. Using gene editing, two studies have shown that it is possible to modify the epitopes in several alpha- and gamma-gliadins simultaneously, while deleting some of the genes completely. In some lines more than 80% of the alpha-gliadin genes were modified. These proof-of-principle studies show that it is feasible to use gene editing, along with other breeding approaches, to completely remove the CD epitopes from bread wheat. Gene-edited coeliac-safe wheat will have economic, social and environmental impact on food security, nutrition and public health, but the realisation will (partially) depend on new European legislation for plants produced by gene editing.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3