1. Akhtar, S., Basile, V., Patti, V.: Whose opinions matter? Perspective-aware models to identify opinions of hate speech victims in abusive language detection. arXiv preprint arXiv:2106.15896 (2021)
2. Almanea, D., Poesio, M.: ArMIS - the Arabic misogyny and sexism corpus with annotator subjective disagreements. In: Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 2282–2291. European Language Resources Association, Marseille, France (2022). https://aclanthology.org/2022.lrec-1.244
3. Astorino, A., Rizzi, G., Fersini, E.: Integrated gradients as proxy of disagreement in hateful content. In: CEUR WORKSHOP PROCEEDINGS, vol. 3596. CEUR-WS.org (2023)
4. Beigman Klebanov, B., Beigman, E.: From annotator agreement to noise models. Comput. Linguist. 35(4), 495–503 (2009)
5. Cercas Curry, A., Abercrombie, G., Rieser, V.: ConvAbuse: data, analysis, and benchmarks for nuanced abuse detection in conversational AI. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 7388–7403. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic (2021). https://doi.org/10.18653/v1/2021.emnlp-main.587, https://aclanthology.org/2021.emnlp-main.587