Publisher
Springer Nature Switzerland
Reference21 articles.
1. Yoo, S., Kim, S.: Two-phase malicious web page detection scheme using misuse and anomaly detection. Int. J. Reliable Inf. Assur. 2(1), 1–9 (2014)
2. Sirageldin, A., Baharudin, B.B., Jung, L.T.: Malicious web page detection: A machine learning approach. In: Advances in Computer Science and its Applications: CSA 2013, pp. 217-224. Research Gate. Springer, Berlin Heidelberg (2014). https://doi.org/10.1007/978-3-642-41674-3_32
3. Wang, Yao, Cai, Wan-dong, Wei, Peng-cheng: A deep learning approach for detecting malicious JavaScript code. Secur. Commun. Net. 9(11), 1520–1534 (2016). https://doi.org/10.1002/sec.1441
4. J Forensic Sci & Criminal Inves, Malicious Website Detection: A Review, Journal of forensic sciences and criminal investigation ISSN 2476–1311, 2018
5. Eshete, B., Villafiorita, A., Weldemariam, K.: Malicious website detection: Effectiveness and efficiency issues. In: Proceedings of the 2011 International Conference on Machine Learning and Cybernetics, Guilin, pp. 10–13 (2011)