Publisher
Springer Nature Switzerland
Reference32 articles.
1. Bian, C., Qian, C.: Better running time of the non-dominated sorting genetic algorithm II (NSGA-II) by using stochastic tournament selection. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) Parallel Problem Solving From Nature, PPSN 2022, pp. 428–441. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14721-0_30
2. Cerf, S., Doerr, B., Hebras, B., Kahane, J., Wietheger, S.: The first proven performance guarantees for the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) on a combinatorial optimization problem. In: International Joint Conference on Artificial Intelligence, IJCAI 2023, pp. 5522–5530. ijcai.org (2023)
3. Dang, D.C., Opris, A., Salehi, B., Sudholt, D.: Analysing the robustness of NSGA-II under noise. In: Genetic and Evolutionary Computation Conference, GECCO 2023, pp. 642–651. ACM (2023)
4. Dang, D.C., Opris, A., Salehi, B., Sudholt, D.: A proof that using crossover can guarantee exponential speed-ups in evolutionary multi-objective optimisation. In: Conference on Artificial Intelligence, AAAI 2023, pp. 12390–12398. AAAI Press (2023)
5. Do, A.V., Neumann, A., Neumann, F., Sutton, A.M.: Rigorous runtime analysis of MOEA/D for solving multi-objective minimum weight base problems. In: Advances in Neural Information Processing Systems, pp. 36434–36448. Curran Associates (2023)