1. Diaz-Pinto, A., Morales, S., Naranjo, V., Köhler, T., Mossi, J.M., Navea, A.: CNNs for automatic glaucoma assessment using fundus images: an extensive validation. Biomed. Eng. Online 18(1), 29 (2019)
2. Guan, M.Y., Gulshan, V., Dai, A.M., Hinton, G.E.: Who said what: modeling individual labelers improves classification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
3. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1735–1742. IEEE (2006)
4. Hammel, N., et al.: A study of feature-based consensus formation for glaucoma risk assessment. Investigative Ophthalmol. Vis. Sci. 60(9), 164–164 (2019)
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)