Author:
Ramsundram N.,Sattari Mohammad Taghi,Kaviya R.,Kaarthic M.,Niveditha M.
Publisher
Springer International Publishing
Reference34 articles.
1. Alsmadi, M. K. S., Omar, K. B., & Noah, S. A. (2009). Back propagation algorithm: The best algorithm among the multilayer perceptron algorithm. IJCSNS International Journal of Computer Science and Network Security, 9(4).
2. Banerjee, P., Singh, V. S., Chattopadhyay, K., Chandra, P. C., & Singh, B. (2011). Artificial neural networkmodel as a potential alternative for groundwatersalinity forecasting. Journal of Hydrology, 398(2011), 212–220.
3. Barzegar, R., & Asghari Moghaddam, A. (2016). Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Modeling Earth Systems and Environment, 2(1), 1–13. https://doi.org/10.1007/s40808-015-0072-8
4. Behzad, M., Asghari, K., & Coppola, E. A. (2010). Comparative study of SVMs and ANNs in aquifer water level prediction. Journal of Computing in Civil Engineering, 24(5), 408–413. https://doi.org/10.1061/(asce)cp.1943-5487.0000043
5. Chang, J., Wang, G., & Mao, T. (2015). Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. Journal of Hydrology, 529, 1211–1220. https://doi.org/10.1016/j.jhydrol.2015.09.038