1. Bai, L., Ji, W., Li, Q., Yao, X., Xin, W., Zhu, W.: Dnnabacus: toward accurate computational cost prediction for deep neural networks (2022)
2. Bouhali, N., Ouarnoughi, H., Niar, S., El Cadi, A.A.: Execution time modeling for CNN inference on embedded GPUs. In: Proceedings of the 2021 Drone Systems Engineering and Rapid Simulation and Performance Evaluation: Methods and Tools Proceedings, DroneSE and RAPIDO 2021, pp. 59–65. Association for Computing Machinery, New York, NY, USA (2021)
3. Brown, T.B., et al.: Language models are few-shot learners. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS 2020, Curran Associates Inc., Red Hook, NY, USA (2020)
4. Dudziak, L., Chau, T., Abdelfattah, M.S., Lee, R., Kim, H., Lane, N.D.: BRP-NAS: prediction-based NAS using GCNs. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS 2020, Curran Associates Inc., Red Hook, NY, USA (2020)
5. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2021)