1. Arfat, Y., Mittone, G., Colonnelli, I., D’Ascenzo, F., Esposito, R., Aldinucci, M.: Pooling critical datasets with federated learning. In: IEEE PDP (2023)
2. Bartolini, A., Ficarelli, F., Parisi, E., Beneventi, F., Barchi, F., Gregori, D., et al.: Monte cimone: paving the road for the first generation of risc-v high-performance computers. In: IEEE SOCC, pp. 1–6 (2022)
3. Beltrán, E.T.M., Pérez, M.Q., Sánchez, P.M.S., Bernal, S.L., Bovet, G., Pérez, M.G., et al.: Decentralized federated learning: fundamentals, state-of-the-art, frameworks, trends, and challenges. arXiv preprint arXiv:2211.08413 (2022)
4. Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., de Gusmão, P.P., et al.: Flower: a friendly federated learning research framework. arXiv preprint arXiv:2007.14390 (2020)
5. Foley, P., Sheller, M.J., Edwards, B., Pati, S., Riviera, W., Sharma, M., et al.: OpenFL: the open federated learning library. Phys. Med. Biol. 67(21), 214001 (2022)