Publisher
Springer Nature Switzerland
Reference16 articles.
1. Sarker, I.H. 2023. Machine learning for intelligent data analysis and automation in cybersecurity: Current and future prospects. Annals of Data Science 10 (6): 1473–1498.
2. Al-Omari, M., M. Rawashdeh, F. Qutaishat, M. Alshira’H, and N. Ababneh. 2021. An intelligent tree-based intrusion detection model for cyber security. Journal of Network and Systems Management 29: 1–18.
3. Vu, Q.H., D. Ruta, and L. Cen. 2019. Gradient boosting decision trees for cyber security threats detection based on network events logs. In 2019 IEEE International Conference on Big Data (Big Data), 5921–5928. Piscataway: IEEE.
4. Sarker, I.H., Y.B. Abushark, F. Alsolami, and A.I. Khan. 2020. Intrudtree: A Machine Learning-Based Cyber Security Intrusion Detection Model. Symmetry 12 (5): 754.
5. Primartha, R., and B.A. Tama. 2017. Anomaly detection using random forest: A performance revisited. In 2017 International Conference on Data and Software Engineering (ICoDSE), 1–6. Piscataway: IEEE.