Author:
Hagn Korbinian,Grau Oliver
Abstract
AbstractSynthetic, i.e., computer-generated imagery (CGI) data is a key component for training and validating deep-learning-based perceptive functions due to its ability to simulate rare cases, avoidance of privacy issues, and generation of pixel-accurate ground truth data. Today, physical-based rendering (PBR) engines simulate already a wealth of realistic optical effects but are mainly focused on the human perception system. Whereas the perceptive functions require realistic images modeled with sensor artifacts as close as possible toward the sensor, the training data has been recorded. This chapter proposes a way to improve the data synthesis process by application of realistic sensor artifacts. To do this, one has to overcome the domain distance between real-world imagery and the synthetic imagery. Therefore, we propose a measure which captures the generalization distance of two distinct datasets which have been trained on the same model. With this measure the data synthesis pipeline can be improved to produce realistic sensor-simulated images which are closer to the real-world domain. The proposed measure is based on the Wasserstein distance (earth mover’s distance, EMD) over the performance metric mean intersection-over-union (mIoU) on a per-image basis, comparing synthetic and real datasets using deep neural networks (DNNs) for semantic segmentation. This measure is subsequently used to match the characteristic of a real-world camera for the image synthesis pipeline which considers realistic sensor noise and lens artifacts. Comparing the measure with the well-established Fréchet inception distance (FID) on real and artificial datasets demonstrates the ability to interpret the generalization distance which is inherent asymmetric and more informative than just a simple distance measure. Furthermore, we use the metric as an optimization criterion to adapt a synthetic dataset to a real dataset, decreasing the EMD distance between a synthetic and the Cityscapes dataset from 32.67 to 27.48 and increasing the mIoU of our test algorithm () from 40.36 to $$47.63\%$$
47.63
%
.
Publisher
Springer International Publishing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献