Word Embeddings for Fake Malware Generation

Author:

Tran Quang Duy,Di Troia FabioORCID

Abstract

AbstractSignature and anomaly-based techniques are the fundamental methods to detect malware. However, in recent years this type of threat has advanced to become more complex and sophisticated, making these techniques less effective. For this reason, researchers have resorted to state-of-the-art machine learning techniques to combat the threat of information security. Nevertheless, despite the integration of the machine learning models, there is still a shortage of data in training that prevents these models from performing at their peak. In the past, generative models have been found to be highly effective at generating image-like data that are similar to the actual data distribution. In this paper, we leverage the knowledge of generative modeling on opcode sequences and aim to generate malware samples by taking advantage of the contextualized embeddings from BERT. We obtained promising results when differentiating between real and generated samples. We observe that generated malware has such similar characteristics to actual malware that the classifiers are having difficulty in distinguishing between the two, in which the classifiers falsely identify the generated malware as actual malware almost $$90\%$$ of the time.

Publisher

Springer Nature Switzerland

Reference34 articles.

1. Advanced guide to inception V3, Google. https://cloud.google.com/tpu/docs/inception-v3-advanced

2. Aycock, J.: Computer Viruses and Malware. Springer, New York (2006)

3. Computer Communications and Networks;D Dhanasekar,2018

4. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108 (2019)

5. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: the hidden malware. IEEE Secur. Priv. 9(5), 41–47 (2011). https://doi.org/10.1109/MSP.2011.98

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Malware Detection Using “Genetic Markers” and Machine Learning;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3