Design and Characterization of Piezoceramic Thick Film Sensor for Measuring Cutting Forces in Turning Processes

Author:

Panesso M.,Ettrichrätz M.,Gebhardt S.,Georgi O.,Rüger C.,Gnauck M.,Drossel W.-G.

Abstract

AbstractCutting forces in turning processes usually correlate with tool conditions. For this reason, the acquisition of force signals is of key importance for monitoring purposes. Despite the robustness of current piezoelectric measuring platforms, their large weight ratio relative to standalone tool-holder systems limits their effective usable bandwidth for analyzing force signals. Further limitations include high costs and lack of flexibility for general purpose turning operations. Due to this, such systems fail to find acceptance in practical applications and are mainly limited to research activities. To improve these aspects, this work investigates the use of an alternative integration concept using a piezoceramic thick film sensor for performing near-process cutting force measurements at the tool-holder. The charge output of the sensor was estimated using a coupled structural-piezoelectric simulation for its design. The modelled prototype was assembled and characterized by means of a static calibration and an impact hammer test. Following these, a first implementation of the system under dry cutting conditions took place.

Publisher

Springer International Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3