Faunal Biodiversity in Rice-Dominated Wetlands—An Essential Component of Sustainable Rice Production

Author:

Propper Catherine R.,Singleton Grant Robert,Sedlock Jodi L.,Smedley Richard E.,Frith Oliver B.,Shuman-Goodier Molly E.,Lorica Renee P.,Grajal-Puche Alejandro,Horgan Finbarr G.,Prescott Colin V.,Stuart Alexander M.

Abstract

AbstractRice agriculture provides wetlands and complex habitats supporting biodiversity. Wetlands associated with rice agriculture since the 1960s have increased by 32% and now form nearly 12% of wetlands globally at a time when vast areas of natural wetlands are being lost. In this chapter, we set our sights beyond Sustainable Development Goal (SDG) 2 that focuses on ending hunger and achieving food security via the promotion of sustainable agriculture. Often, agricultural scientists are so motivated to achieve food security that they pay insufficient attention to the need to have a healthy and dynamic agroecosystem that promotes floral and faunal biodiversity, which may also provide ecosystem services including support for food security of smallholder families. Because of their aquatic, semi-aquatic, and terrestrial ecological phases, rice fields represent a changing mosaic of ecological niches and have the potential to sustain a broad diversity of wildlife. In addition, a multitude of studies have investigated how modifications to rice cultivation have the potential to support a greater diversity of species across biological scales while often maintaining or increasing yield. SDG 15 emphasizes the need to promote sustainable use of terrestrial ecosystems and halt biodiversity loss. Given the high losses in global biodiversity, especially in tropical zones where most of the world’s rice is grown, we set our sights on achieving both SDGs 2 and 15. We provide case studies on amphibians, bats, birds, and rodents living in and around irrigated rice-cropping systems. We report on transdisciplinary studies supported by CORIGAP that include agronomic, sociological, ecological, biochemical, environmental physiological, and genomic studies. Most of these studies identify potential positive ecosystem services provided by wildlife, which can lead to more sustainable and healthier rice production landscapes. We conclude that our current management of rice landscapes contributes to the biodiversity crisis. Rice production often overuses pesticides and fertilizers and applies unsustainable intensification practices and land modifications, which result in biodiversity loss. Finding a balance, where human population requirements for food are met without degrading the natural environment, is critical to the health of smallholder agricultural communities. We propose that future research and development projects need to: build capacity of countries to scale-up use of proven practices that reduce rice farming’s ecological footprint and conserve biodiversity, increase investment in biodiversity research in rice production landscapes, promote Green “Rice Value Chains” and “Agri-input Markets,” and monitor and evaluate the ecological benefits to biodiversity of broadscale promotion of sustainable rice production.

Publisher

Springer Nature Switzerland

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3