1. Atanasova, P., Simonsen, J.G., Lioma, C., Augenstein, I.: A diagnostic study of explainability techniques for text classification. arXiv preprint arXiv:2009.13295 (2020)
2. Attanasio, G., Nozza, D., Pastor, E., Hovy, D.: Benchmarking post-hoc interpretability approaches for transformer-based misogyny detection. In: Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP, pp. 100–112 (2022)
3. Biradar, S., Saumya, S., et al.: Fighting hate speech from bilingual Hinglish speaker’s perspective, a transformer-and translation-based approach. Soc. Netw. Anal. Min. 12(1), 1–10 (2022)
4. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)
5. Camburu, O.M., Rocktäschel, T., Lukasiewicz, T., Blunsom, P.: e-SNLI: natural language inference with natural language explanations. In: Advances in Neural Information Processing Systems, vol. 31 (2018)