Fixpoint Theory – Upside Down

Author:

Baldan PaoloORCID,Eggert RichardORCID,König BarbaraORCID,Padoan TommasoORCID

Abstract

AbstractKnaster-Tarski’s theorem, characterising the greatest fix- point of a monotone function over a complete lattice as the largest post-fixpoint, naturally leads to the so-called coinduction proof principle for showing that some element is below the greatest fixpoint (e.g., for providing bisimilarity witnesses). The dual principle, used for showing that an element is above the least fixpoint, is related to inductive invariants. In this paper we provide proof rules which are similar in spirit but for showing that an element is above the greatest fixpoint or, dually, below the least fixpoint. The theory is developed for non-expansive monotone functions on suitable lattices of the form $$\mathbb {M}^Y$$ M Y , where Y is a finite set and $$\mathbb {M}$$ M an MV-algebra, and it is based on the construction of (finitary) approximations of the original functions. We show that our theory applies to a wide range of examples, including termination probabilities, behavioural distances for probabilistic automata and bisimilarity. Moreover it allows us to determine original algorithms for solving simple stochastic games.

Publisher

Springer International Publishing

Reference30 articles.

1. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of bisimilarity distances. Logical Methods in Computer Science 13(2:13), 1–25 (2017)

2. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R., Tang, Q., van Breugel, F.: Computing probabilistic bisimilarity distances for probabilistic automata. In: Proc. of CONCUR ’19. LIPIcs, vol. 140, pp. 9:1–9:17. Schloss Dagstuhl– Leibniz Center for Informatics (2019)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

4. Baldan, P., Bonchi, F., Kerstan, H., König, B.: Coalgebraic behavioral metrics. Logical Methods in Computer Science 14(3) (2018), selected Papers of the 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)

5. Baldan, P., Eggert, R., König, B., Padoan, T.: Fixpoint theory – upside down(2021), https://arxiv.org/abs/2101.08184, arXiv:2101.08184

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lower Bounds for Possibly Divergent Probabilistic Programs;Proceedings of the ACM on Programming Languages;2023-04-06

2. A Monoidal View on Fixpoint Checks;Graph Transformation;2023

3. Latticed k-Induction with an Application to Probabilistic Programs;Computer Aided Verification;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3