1. Augenstein, S., et al.: Generative models for effective ml on private, decentralized datasets. In: ICLR (2020). https://openreview.net/forum?id=SJgaRA4FPH
2. Auslender, A.: Méthodes Numériques pour la Résolution des Problèmes d’Optimisation avec Contraintes. Ph.D. thesis, Faculté des Sciences, Grenoble, France (1969)
3. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: AISTATS. Proceedings of Machine Learning Research, vol. 108, pp. 2938–2948 (2020). http://proceedings.mlr.press/v108/bagdasaryan20a.html
4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2nd edn. (2017). https://link.springer.com/book/10.1007/978-3-319-48311-5
5. Bauschke, H.H., Combettes, P.L., Reich, S.: The asymptotic behavior of the composition of two resolvents. Nonlinear Anal. Theory Methods Appl. 60(2), 283–301 (2005). https://doi.org/10.1016/j.na.2004.07.054