A High-Resolution Model of the Human Entorhinal Cortex in the ‘BigBrain’ – Use Case for Machine Learning and 3D Analyses

Author:

Behuet Sabrina,Bludau Sebastian,Kedo Olga,Schiffer Christian,Dickscheid Timo,Brandstetter Andrea,Massicotte Philippe,Omidyeganeh Mona,Evans Alan,Amunts Katrin

Abstract

AbstractThe ‘BigBrain’ is a high-resolution data set of the human brain that enables three-dimensional (3D) analyses with a 20 µm spatial resolution at nearly cellular level. We use this data set to explore pre-α (cell) islands of layer 2 in the entorhinal cortex (EC), which are early affected in Alzheimer’s disease and have therefore been the focus of research for many years. They appear mostly in a round and elongated shape as shown in microscopic studies. Some studies suggested that islands may be interconnected based on analyses of their shape and size in two-dimensional (2D) space. Here, we characterized morphological features (shape, size, and distribution) of pre-α islands in the ‘BigBrain’, based on 3D-reconstructions of gapless series of cell-body-stained sections. The EC was annotated manually, and a machine-learning tool was trained to identify and segment islands with subsequent visualization using high-performance computing (HPC). Islands were visualized as 3D surfaces and their geometry was analyzed. Their morphology was complex: they appeared to be composed of interconnected islands of different types found in 2D histological sections of EC, with various shapes in 3D. Differences in the rostral-to-caudal part of EC were identified by specific distribution and size of islands, with implications for connectivity and function of the EC. 3D compactness analysis found more round and complex islands than elongated ones. The present study represents a use case for studying large microscopic data sets. It provides reference data for studies, e.g. investigating neurodegenerative diseases, where specific alterations in layer 2 were previously reported.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3