Safe Transitions in Complex Systems

Author:

Weyer Johannes

Abstract

AbstractComplex systems, including energy and transportation systems, constitute a crucial part of modern societies’ critical infrastructure. It is imperative to ensure their stability even during periods of crisis or fundamental transformation, such as sustainability transformation. It is difficult to anticipate how individuals will respond to policy interventions aimed at preserving stability, for example, by banning cars from congested roads, or to policy interventions aimed at fundamentally altering the system, for instance, by promoting renewable energies. A conflict of interest may occur at both an individual and institutional level if sustainability measures, such as increasing the number of electric vehicles or photovoltaic systems, jeopardize the stability of the system, for example, by increasing grid volatility. Furthermore, research into complex systems has demonstrated that they tend to develop nonlinearly rather than linearly, making them difficult to predict. Agent-based modeling (ABM) has emerged as a valuable method to comprehend the dynamics of complex socio-technical systems. Moreover, ABM enables us to anticipate future outcomes and evaluate the effectiveness of different policy measures aimed at enhancing safety or promoting sustainability (or both). The chapter briefly introduces the ABM concept and the SimCo simulation framework, developed at TU Dortmund University. SimCo is grounded in analytical sociology, focusing on people’s everyday practices, bounded-rational decision-making and on governance concerns. Additionally, this chapter will present the outcomes of several simulation experiments to address the question of how to achieve safe transformations of complex systems.

Publisher

Springer Nature Switzerland

Reference26 articles.

1. F. Adelt, J. Weyer, S. Hoffmann, A. Ihrig, Simulation of the governance of complex systems (SimCo). Basic concepts and experiments on urban transportation. J. Artif. Soc. Soc. Simul. 21(2) (2018). http://jasss.soc.surrey.ac.uk/21/2/2.html

2. Agora Energiewende, European Energy Transition 2030: The Big Picture. Ten Priorities for the Next European Commission to Meet the EU’s 2030 Targets and Accelerate Towards 2050 (2019). https://www.agoraenergiewende.de/en/publications/european-energytransition-2030-the-big-picture

3. A. Bleicher, The perspective of real-world experimentation as approach to study uncertainty and safety issues related to sustainability transitions—the example of geothermal energy (in this volume) (2023)

4. dena, Deutsche Energieagentur: Eine erfolgreiche Energiewende bedarf des Ausbaus der Stromverteilnetze in Deutschland, in dena-Verteilnetzstudie: Zusammenfassung der zentralen Ergebnisse der Studie „Ausbau- und Innovationsbedarf in den Stromverteilnetzen in Deutschland bis 2030“ durch die Projektsteuergruppe (2012). https://www.dena.de/fileadmin/dena/Dokumente/Themen_und_Projekte/Energiesysteme/dena-Verteilnetzstudie/121210_denaVNS_Ergebniszusammenfassung_PSG_pdf.pdf

5. O.A. Engen, C. Morsut, Climate risk at local level: proposing a systemic risk approach for a reliable transformation of a local industry system (in this volume) (2023)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3