Power Line Segmentation in Aerial Images Using Convolutional Neural Networks
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-34869-4_68
Reference14 articles.
1. Matikainen, L., et al.: Remote sensing methods for power line corridor surveys. ISPRS J. Photogr. Remote Sens. 119, 10–31 (2016)
2. Katrasnik, J., Pernus, F., Likar, B.: A survey of mobile robots for distribution power line inspection. IEEE Trans. Power Delivery 25(1), 485–493 (2009)
3. Nguyen, V.N., Jenssen, R., Roverso, D.: Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning. Int. J. Electr. Power Energy Syst. 99, 107–120 (2018)
4. Mirallès, F., Pouliot, N., Montambault, S.: State-of-the-art review of computer vision for the management of power transmission lines. In: Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry, pp. 1–6. IEEE, October 2014
5. Cerón, A., Prieto, F.: Power line detection using a circle based search with UAV images. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 632–639. IEEE, May 2014
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Taking the Long View: Enhancing Learning On Multi-Temporal, High-Resolution, and Disparate Remote Sensing Data;Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation;2023-11-15
2. PLPose: An efficient framework for detecting power lines via key points-based pose estimation;Journal of King Saud University - Computer and Information Sciences;2023-07
3. The growth of UAV aerial images-related power lines detection: a literature review of 2023;Journal of Image and Graphics;2023
4. Deep Learning for Segmentation of Critical Electrical Infrastructure from Vehicle-Based Images;2022 IEEE Electrical Power and Energy Conference (EPEC);2022-12-05
5. Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis;Applied Energy;2022-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3