ACoRe: Automated Goal-Conflict Resolution

Author:

Carvalho Luiz,Degiovanni Renzo,Brizzio Matías,Cordy Maxime,Aguirre Nazareno,Traon Yves Le,Papadakis Mike

Abstract

AbstractSystem goals are the statements that, in the context of software requirements specification, capture how the software should behave. Many times, the understanding of stakeholders on what the system should do, as captured in the goals, can lead to different problems, from clearly contradicting goals, to more subtle situations in which the satisfaction of some goals inhibits the satisfaction of others. These latter issues, called goal divergences, are the subject of goal conflict analysis, which consists of identifying, assessing, and resolving divergences, as part of a more general activity known as goal refinement.While there exist techniques that, when requirements are expressed formally, can automatically identify and assess goal conflicts, there is currently no automated approach to support engineers in resolving identified divergences. In this paper, we present ACoRe, the first approach that automatically proposes potential resolutions to goal conflicts, in requirements specifications formally captured using linear-time temporal logic. ACoRe systematically explores syntactic modifications of the conflicting specifications, aiming at obtaining resolutions that disable previously identified conflicts, while preserving specification consistency. ACoRe integrates modern multi-objective search algorithms (in particular, NSGA-III, WBGA, and AMOSA) to produce resolutions that maintain coherence with the original conflicting specification, by searching for specifications that are either syntactically or semantically similar to the original specification.We assess ACoRe on 25 requirements specifications taken from the literature. We show that ACoRe can successfully produce various conflict resolutions for each of the analyzed case studies, including resolutions that resemble specification repairs manually provided as part of conflict analyses.

Publisher

Springer Nature Switzerland

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Reactive Synthesis Using Mode Decomposition;Theoretical Aspects of Computing – ICTAC 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3