Preprocessing Tools for Data Preparation

Author:

Montesinos López Osval Antonio,Montesinos López Abelardo,Crossa Jose

Abstract

AbstractThis data preparation chapter is of paramount importance for implementing statistical machine learning methods for genomic selection. We present the basic linear mixed model that gives rise to BLUE and BLUP and explain how to decide when to use fixed or random effects that give rise to best linear unbiased estimates (BLUE or BLUEs) and best linear unbiased predictors (BLUP or BLUPs). The R codes for fitting linear mixed model for the data are given in small examples. We emphasize tools for computing BLUEs and BLUPs for many linear combinations of interest in genomic-enabled prediction and plant breeding. We present tools for cleaning, imputing, and detecting minor and major allele frequency computation, marker recodification, frequency of heterogeneous, frequency of NAs, and three methods for computing the genomic relationship matrix. In addition, scaling and data compression of inputs are important in statistical machine learning. For a more extensive description of linear mixed models, see Chap. 10.1007/978-3-030-89010-0_5.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer International Publishing

Reference19 articles.

1. Austin PC, Brunner LJ (2004) Inflation of the type I error rate when a continuous confounding variable is categorized in logistic regression analyses. Stat Med 23(7):1159–1178

2. Griffiths JF, Griffiths AJ, Wessler SR, Lewontin RC, Gelbart WM, Suzuki DT, Miller JH (2005) An introduction to genetic analysis. Macmillan, New York

3. Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310

4. Henderson CR (1963) Selection index and expected genetic advance. In: Hanson WD, Robinson HF (eds) Statistical genetics and plant breeding, Publication 982. Washington, DC, National Academy of Sciences, National Research Council, pp 141–163

5. Henderson CR (1973) Sire evaluation and genetic trends. In: Proceedings of the animal breeding and genetics symposium in honor of J. L. Lush. Blackburgh, Champaign, IL, American Society for Animal Science, pp 10–41

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3