Fundamentals of Artificial Neural Networks and Deep Learning

Author:

Montesinos López Osval Antonio,Montesinos López Abelardo,Crossa Jose

Abstract

AbstractIn this chapter, we go through the fundamentals of artificial neural networks and deep learning methods. We describe the inspiration for artificial neural networks and how the methods of deep learning are built. We define the activation function and its role in capturing nonlinear patterns in the input data. We explain the universal approximation theorem for understanding the power and limitation of these methods and describe the main topologies of artificial neural networks that play an important role in the successful implementation of these methods. We also describe loss functions (and their penalized versions) and give details about in which circumstances each of them should be used or preferred. In addition to the Ridge, Lasso, and Elastic Net regularization methods, we provide details of the dropout and the early stopping methods. Finally, we provide the backpropagation method and illustrate it with two simple artificial neural networks.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer International Publishing

Reference38 articles.

1. Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 33:831–838

2. Anderson J, Pellionisz A, Rosenfeld E (1990) Neurocomputing 2: directions for research. MIT, Cambridge

3. Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learning for computational biology. Mol Syst Biol 12(878):1–16

4. Chollet F, Allaire JJ (2017) Deep learning with R. Manning Publications, Manning Early Access Program (MEA), 1st edn

5. Cole JH, Rudra PK, Poudel DT, Matthan WA, Caan CS, Tim D, Spector GM (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage 163(1):115–124. https://doi.org/10.1016/j.neuroimage.2017.07.059

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3