Reproducing Kernel Hilbert Spaces Regression and Classification Methods

Author:

Montesinos López Osval Antonio,Montesinos López Abelardo,Crossa Jose

Abstract

AbstractThe fundamentals for Reproducing Kernel Hilbert Spaces (RKHS) regression methods are described in this chapter. We first point out the virtues of RKHS regression methods and why these methods are gaining a lot of acceptance in statistical machine learning. Key elements for the construction of RKHS regression methods are provided, the kernel trick is explained in some detail, and the main kernel functions for building kernels are provided. This chapter explains some loss functions under a fixed model framework with examples of Gaussian, binary, and categorical response variables. We illustrate the use of mixed models with kernels by providing examples for continuous response variables. Practical issues for tuning the kernels are illustrated. We expand the RKHS regression methods under a Bayesian framework with practical examples applied to continuous and categorical response variables and by including in the predictor the main effects of environments, genotypes, and the genotype ×environment interaction. We show examples of multi-trait RKHS regression methods for continuous response variables. Finally, some practical issues of kernel compression methods are provided which are important for reducing the computation cost of implementing conventional RKHS methods.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer International Publishing

Reference42 articles.

1. Akhiezer NI, Glazman IM (1963) Theory of linear operators in Hilbert Space (Teoriia lineikykh operatorov v Gil’bertovom prostranstve), vol 1. M. Nestell, trans. from Russian. Frederick Ungar, New York

2. Buil A, Brown AA, Lappalainen T, Viñuela A, Davies MN, Zheng HF, Richards JB, Glass D, Small KS, Durbin R et al (2015) Gene-gene and gene-environment interactions detected by transcriptome sequence analysis in twins. Nat Genet 47:88–91

3. Cho Y, Saul LK (2009) Kernel methods for deep learning. In: NIPS’09 proceedings of the 22nd international conference on neural information processing systems, pp 342–350

4. Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

5. Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10:392–404

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3