1. Antonelli, M., et al.: The medical segmentation decathlon. arXiv preprint arXiv:2106.05735 (2021)
2. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)
3. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
4. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)
5. Hong, S., et al.: Hypernet-ensemble learning of segmentation probability for medical image segmentation with ambiguous labels. arXiv preprint arXiv:2112.06693 (2021)