Author:
Bonheur Savinien,Pienn Michael,Olschewski Horst,Bischof Horst,Urschler Martin
Publisher
Springer Nature Switzerland
Reference25 articles.
1. Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P.A. et al.: deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?. In: IEEE Transactions on Medical Imaging, vol. 37 (2018)
2. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local Networks meet Squeeze-Excitation Networks and beyond. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
3. Chen, J., et al.: TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv preprint arXiv:2102.04306 (2021)
4. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: A2-Nets: double attention networks. Adv. Neural Inform. Process. Syst. 31 (2018)
5. Dong, S., et al.: DeU-Net 2.0: enhanced deformable U-Net for 3d cardiac cine MRI segmentation. Med. Image Anal. 78 (2022)